Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense.

Identifieur interne : 000C54 ( Main/Exploration ); précédent : 000C53; suivant : 000C55

Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense.

Auteurs : Aaron C. Rhodes [États-Unis] ; Randy T. Larsen [États-Unis] ; Jordan D. Maxwell [États-Unis] ; Samuel B. St Clair [États-Unis]

Source :

RBID : pubmed:30242473

Descripteurs français

English descriptors

Abstract

Ungulate herbivory can create strong top-down effects on forest recruitment, especially after fire. Defense strategies of tree species against ungulate herbivory include escape through vertical growth and resistance through the production of defense compounds. Using a four-way fence design and camera traps we characterized the differential impacts of ungulate herbivores (deer, elk, cattle) on aspen forest recruitment and plant defense responses and how they vary depending on the timing of herbivory. Aspen height growth was greatest between June and August and ungulate use of aspen was highest in July and August. Three years after fire, height of aspen differed among fence treatments with full ungulate exclusion > deer-only plots > native ungulate plots > fenceless plots: 108 ± 4 cm, 94 ± 4 cm, 89 ± 4 cm, and 65 ± 4 cm, respectively. Fenceless plots had the highest rates of removal of apical meristems by the end of 2014 and 2015 (61% and 53%, respectively). Native ungulate plots, and deer-only plots both had similar removal of apical meristems in 2014 (37% and 39%, respectively). The highest phenolic glycoside concentrations were associated with an 80% reduction in meristem removal and four-fold greater aspen height by the end of summer. Low nitrogen was associated with an 86% reduction in apical meristem removal and threefold greater aspen height. In conclusion, our study suggests that high ungulate abundance can have detrimental impacts on forest recruitment and that high aspen defense chemistry and lower leaf N deters ungulate herbivory, especially in the late summer.

DOI: 10.1007/s00442-018-4253-9
PubMed: 30242473


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense.</title>
<author>
<name sortKey="Rhodes, Aaron C" sort="Rhodes, Aaron C" uniqKey="Rhodes A" first="Aaron C" last="Rhodes">Aaron C. Rhodes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Larsen, Randy T" sort="Larsen, Randy T" uniqKey="Larsen R" first="Randy T" last="Larsen">Randy T. Larsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maxwell, Jordan D" sort="Maxwell, Jordan D" uniqKey="Maxwell J" first="Jordan D" last="Maxwell">Jordan D. Maxwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA. stclair@byu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30242473</idno>
<idno type="pmid">30242473</idno>
<idno type="doi">10.1007/s00442-018-4253-9</idno>
<idno type="wicri:Area/Main/Corpus">000C56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C56</idno>
<idno type="wicri:Area/Main/Curation">000C56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C56</idno>
<idno type="wicri:Area/Main/Exploration">000C56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense.</title>
<author>
<name sortKey="Rhodes, Aaron C" sort="Rhodes, Aaron C" uniqKey="Rhodes A" first="Aaron C" last="Rhodes">Aaron C. Rhodes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Larsen, Randy T" sort="Larsen, Randy T" uniqKey="Larsen R" first="Randy T" last="Larsen">Randy T. Larsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maxwell, Jordan D" sort="Maxwell, Jordan D" uniqKey="Maxwell J" first="Jordan D" last="Maxwell">Jordan D. Maxwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA. stclair@byu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602</wicri:regionArea>
<wicri:noRegion>84602</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cattle (MeSH)</term>
<term>Deer (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Cervidae (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Populus (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Deer</term>
<term>Forests</term>
<term>Herbivory</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Arbres</term>
<term>Bovins</term>
<term>Cervidae</term>
<term>Feuilles de plante</term>
<term>Forêts</term>
<term>Herbivorie</term>
<term>Populus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ungulate herbivory can create strong top-down effects on forest recruitment, especially after fire. Defense strategies of tree species against ungulate herbivory include escape through vertical growth and resistance through the production of defense compounds. Using a four-way fence design and camera traps we characterized the differential impacts of ungulate herbivores (deer, elk, cattle) on aspen forest recruitment and plant defense responses and how they vary depending on the timing of herbivory. Aspen height growth was greatest between June and August and ungulate use of aspen was highest in July and August. Three years after fire, height of aspen differed among fence treatments with full ungulate exclusion > deer-only plots > native ungulate plots > fenceless plots: 108 ± 4 cm, 94 ± 4 cm, 89 ± 4 cm, and 65 ± 4 cm, respectively. Fenceless plots had the highest rates of removal of apical meristems by the end of 2014 and 2015 (61% and 53%, respectively). Native ungulate plots, and deer-only plots both had similar removal of apical meristems in 2014 (37% and 39%, respectively). The highest phenolic glycoside concentrations were associated with an 80% reduction in meristem removal and four-fold greater aspen height by the end of summer. Low nitrogen was associated with an 86% reduction in apical meristem removal and threefold greater aspen height. In conclusion, our study suggests that high ungulate abundance can have detrimental impacts on forest recruitment and that high aspen defense chemistry and lower leaf N deters ungulate herbivory, especially in the late summer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">30242473</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>188</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense.</ArticleTitle>
<Pagination>
<MedlinePgn>707-719</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-018-4253-9</ELocationID>
<Abstract>
<AbstractText>Ungulate herbivory can create strong top-down effects on forest recruitment, especially after fire. Defense strategies of tree species against ungulate herbivory include escape through vertical growth and resistance through the production of defense compounds. Using a four-way fence design and camera traps we characterized the differential impacts of ungulate herbivores (deer, elk, cattle) on aspen forest recruitment and plant defense responses and how they vary depending on the timing of herbivory. Aspen height growth was greatest between June and August and ungulate use of aspen was highest in July and August. Three years after fire, height of aspen differed among fence treatments with full ungulate exclusion > deer-only plots > native ungulate plots > fenceless plots: 108 ± 4 cm, 94 ± 4 cm, 89 ± 4 cm, and 65 ± 4 cm, respectively. Fenceless plots had the highest rates of removal of apical meristems by the end of 2014 and 2015 (61% and 53%, respectively). Native ungulate plots, and deer-only plots both had similar removal of apical meristems in 2014 (37% and 39%, respectively). The highest phenolic glycoside concentrations were associated with an 80% reduction in meristem removal and four-fold greater aspen height by the end of summer. Low nitrogen was associated with an 86% reduction in apical meristem removal and threefold greater aspen height. In conclusion, our study suggests that high ungulate abundance can have detrimental impacts on forest recruitment and that high aspen defense chemistry and lower leaf N deters ungulate herbivory, especially in the late summer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rhodes</LastName>
<ForeName>Aaron C</ForeName>
<Initials>AC</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4501-0726</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Larsen</LastName>
<ForeName>Randy T</ForeName>
<Initials>RT</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maxwell</LastName>
<ForeName>Jordan D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>St Clair</LastName>
<ForeName>Samuel B</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6612-0329</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, 293 WIDB, Provo, UT, 84602, USA. stclair@byu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003670" MajorTopicYN="Y">Deer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aspen</Keyword>
<Keyword MajorTopicYN="N">Condensed tannins</Keyword>
<Keyword MajorTopicYN="N">Deer</Keyword>
<Keyword MajorTopicYN="N">Defense chemistry</Keyword>
<Keyword MajorTopicYN="N">Elk</Keyword>
<Keyword MajorTopicYN="N">Growth</Keyword>
<Keyword MajorTopicYN="N">Herbivory</Keyword>
<Keyword MajorTopicYN="N">Phenolic glycosides</Keyword>
<Keyword MajorTopicYN="N">Populus tremuloides</Keyword>
<Keyword MajorTopicYN="N">Ungulates</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30242473</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-018-4253-9</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-018-4253-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1985 Nov 22;230(4728):895-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17739203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 Feb;94(2):308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23691650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Mar 1;37(3):402-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Nov;170(3):695-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1996 Apr;22(4):765-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Animal. 2010 Jul;4(7):979-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22444604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Mar;78(4):443-457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Oct;40(10):1135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25284606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Nov;6(6):746-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15570481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mammal. 2014;95(4):834-842</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26366011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Rhodes, Aaron C" sort="Rhodes, Aaron C" uniqKey="Rhodes A" first="Aaron C" last="Rhodes">Aaron C. Rhodes</name>
</noRegion>
<name sortKey="Larsen, Randy T" sort="Larsen, Randy T" uniqKey="Larsen R" first="Randy T" last="Larsen">Randy T. Larsen</name>
<name sortKey="Maxwell, Jordan D" sort="Maxwell, Jordan D" uniqKey="Maxwell J" first="Jordan D" last="Maxwell">Jordan D. Maxwell</name>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30242473
   |texte=   Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30242473" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020